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1. Introduction

Let {Fn}n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and the
recurrence Fn+2 = Fn+1+Fn for all n ≥ 0. A number of recent papers have studied
exponential diophantine equations involving Fibonacci numbers. For example, the
equation F xn + F xn+1 = F ym in positive integers n,m, x, y has been studied in [5],
[6] and [8]. The equation F xn + · · · + F xn+k−1 = Fm in positive integers n, k,m, x

has been studied in [7] while the equation F k1 + · · ·+ F kn−1 = F `n+1 + · · ·+ F `n+r in
positive integers n, r, k, ` has been studied in [2] and [3]. For all these equations,
all their positive integer solutions are now known. The title equation has been first
studied, to our knowledge, in the paper [10]. Since F1 = F2 = 1, the title equation
has the solutions (k, n, p, q) = (1, 1, p, q), (1, 2, p, q) (for any p and q), as well as
(2, 4, p, 1) for any p. We call such solutions trivial. From now on, we assume that
k ≥ 3. In that paper the authors suggested the following conjecture:

Conjecture 1.1. The only nontrivial solutions of the title equation are given by
(k, n, p, q) = (3, 4, 1, 2), (3, 4, 3, 3), (4, 8, 1, 1).

In [10], the authors found all solutions when {p, q} ⊆ {1, 2} by ad-hoc methods.
A general method to find all solutions of the title equation when p and q are given
was proposed in [4]. As an application, the authors of [4] confirmed Conjecture 1.1
for the range of the exponents {p, q} ⊂ [1, 10]. None of the above papers addressed
the question of whether the title equation has only finitely many positive integers
solutions and whether the current methods allow us to bound them or even compute
them. The aim of our paper is to prove that there are only finitely many effectively
computable solutions. Our concrete result is the following.

Theorem 1.1. The title equation has only finitely many positive integer solutions
(k, n, p, q) with k ≥ 3. They all satisfy max{k, n, p, q} ≤ 102500.

We made no efforts to try to reduce the above bound. In the last section of the
paper we explain why we believe that the computations are not feasible and that
new ideas will be required to confirm computationally Conjecture 1.1.
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2. The tools

Most arguments on exponential diophantine equations go via some linear forms
in logarithms of algebraic numbers. We are no exception to this. So, let us recall
the terminology and the results we need.

Let η be an algebraic number of degree d with minimal primitive polynomial
over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)s are the conjugates of η.
Then the logarithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(

max{|η(i)|, 1}
))

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then
h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic
height function h(·), which will be used in this paper without reference:

h(ηγ±1) ≤ h(η) + h(γ),

h(η + γ) ≤ h(η) + h(γ) + log 2,(1)

h(ηs) = |s|h(η) (s ∈ Z).

In order to prove our main result Theorem 1.1, we need to use six times a Baker–
type lower bound for a nonzero linear form in logarithms of algebraic numbers.
There are many such bounds the literature like that of Baker and Wüstholz from
[1]. We use the following one of Matveev from [9].

Theorem 2.1 (Matveev’s theorem). Let γ1, . . . , γt be positive real algebraic num-
bers in a real algebraic number field K of degree D, b1, . . . , bt be nonzero integers,
and assume that

(2) Λ := γb11 · · · γ
bt
t − 1,

is nonzero. Then

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

Above and anywhere else in the paper, log stands for the natural logarithm.

3. The set up

Recall that the equation is

(3)

k∑
j=1

jF pj = F qn .
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As we already mentioned, we take k ≥ 3. Thus, n ≥ 3 also holds. Put

(4) M :=

k∑
j=1

jF pj = F qn and X := logM.

We want to bound X. We write

(α, β) :=

(
1 +
√

5

2
,

1−
√

5

2

)

for the roots of the characteristic equation x2 − x − 1 of the Fibonacci sequence.
Then it is well-known that

F` =
α` − β`

α− β
holds for all ` ≥ 0.

This is sometimes referred to as the Binet formula. We also use the fact that the
inequalities

(5) α`−2 ≤ F` ≤ α`−1

hold for all ` ≥ 1. At one point we will need the companion Lucas sequence {L`}`≥0
given by L0 = 2, L1 = 1 and L`+2 = L`+1 + L` for all ` ≥ 0. It satisfies

L` < 2`

for all ` ≥ 1.

4. The sizes of kp versus nq

Lemma 4.1. We have

(6) 10−1X < kp < 10X and 10−1X < nq < 10X.

Proof. We have

(αk/3)p ≤ (αk−2)p < F pk < M ;

M < k(

k∑
j=1

Fj)
p < k(Fk+2)p < k(αk+1)p < α(k+1)p+3 log k < α5kp.

In the above, we used the identity

F1 + F2 + · · ·+ Fk = Fk+2 − 1 < Fk+2.

Since 1/ logα ∈ (2, 3), it follows that

kp/3 < 3M and 2M < 5kp,

which gives the desired bounds for kp versus M . Similarly,

(αn/3)q ≤ (αn−2)q < F qn = M < (αn−1)q < αnq,

so nq/3 < 3M and 2M < nq, which gives the desired bounds for nq versus M . �
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5. The linear forms

Our proof exploits five linear forms in logarithms together with their lower
bounds (by linear forms in logarithms) provided that they are nonzero:

(7)
Γ1 := kF pkF

−q
n − 1; log |Γ1| > −c1kn(log 10X)2;

Γ2 := kF pkα
−nq√5

q − 1; log Γ2| > −c1k(log 10X)2;

Γ3 := αp(k+1)
(
kαp−(k+1)
5p/2(αp−1)2

)
F−qn − 1; log |Γ3| > −c1pn(log 10X)2;

Γ4 :=
(
kαp−(k+1)
(αp−1)2

)
5(q−p)/2αp(k+1)−qn − 1; log |Γ4| > −c1p(log 10X)2;

Γ5 := kαkp−qn5(q−p)/2 − 1; log |Γ5| > −c1(log 10X)2.

We will justify the fact that they are non-zero later. For now, let us assume that
they are. The inequalities above follow from Theorem 2.1. It remains to assign
some value for c1. Well, each of the forms above is of the form

Γ := γb11 · · · γ
bt
t − 1.

We explain the choices of t, γ1, . . . , γt, b1, . . . , bt for each of the above forms as well
as upper bounds on the heights of the numbers γ1, . . . , γt. For Γ1, we have

t := 3, γ1 := k, γ2 := Fk, γ3 := Fn, b1 := 1, b2 := p, b3 := −q.

Then

B := max{|bi|} < 10X

by Lemma 4.1. This inequality is true for all of the above five forms except for Γ3

and Γ4, where p(k + 1) ≤ 2pk < 20X. Furthermore,

h(γ1) = log k < log(10X), h(γ2) = logFk < 0.5k, h(γ3) = logFn < 0.5n.

For Γ2, we have t := 4 and

γ1 := k, γ2 := Fk, γ3 := α, γ4 :=
√

5, b1 := 1, b2 := p, b3 := −nq, b4 := q.

Here, h(γ1) < log(10X), h(γ2) < 0.5k, h(γ3) < 1, h(γ4) < 1. For Γ3, we have
t := 3 and

γ1 := α, γ2 :=
kαp − (k + 1)

5p/2(αp − 1)2
, γ3 := Fn, b1 := p(k + 1), γ2 := 1, γ3 := −q.

Here, as we said, we take B := 20X, and we have h(γ1) < 1, h(γ3) < 0.5n. The
only one that needs justification is the bound on h(γ2) which is, by the properties
of the heights (1),

h(γ2) ≤ h(kαp − (k + 1)) + 2h(αp − 1) + h(5p/2)

≤ h(k) + ph(α) + h(k + 1) + 2h(αp) + ph(51/2) + 3 log 2

≤ (3 logα/2)p+ 2 log k + 4 log 2 ≤ 10p(log 10X).

For Γ4, we have t := 3 and

γ1 :=
kαp − (k + 1)

(αp − 1)2
, γ2 :=

√
5, γ3 := α, b1 := 1, b2 := q − p, b3 := p(k + 1)− qn,

and for Γ5, we have

t := 3, γ1 := k, γ2 := α γ3 :=
√

5, b1 := 1, b2 := kp− qn, b3 := q − p.
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All actions are happening inside the quadratic field K := Q[
√

5], which has degree

D = 2. If the linear form involves some γ ∈ {α,
√

5} (numbers of heights smaller
than 1), we then take the corresponding A to be 2. If the form involves γ = k,
we take the corresponding A to be 2 log(10X). If the form involves Fk and Fn, we
take the corresponding A to be k and n, respectively. Finally, if the form involves
the number γ2 of Γ3, we take A to be 20p log(10X). As for B, we have that the
inequality 1 + logB < 1 + log(20X) < 2 log(10X) works for all five forms. It then
follows that a uniform c1 that works for all forms can be taken to be, by Theorem
2.1, an upper bound for

1.4× 304+3 × 44.5 × 22 × (1 + log 2)× 2× 20× 22,

so we take c1 := 1017. We record this as a lemma.

Lemma 5.1. For any i = 1, . . . , 5, the inequality shown in Table (7) holds for Γi
with c1 := 1017 assuming that Γi 6= 0.

6. The nonvanishing of the first 4 forms

It is easy to see that Γ1, Γ2 are nonzero. Indeed, since

k−1∑
j=1

jF kj = −(kF pk − F
q
n)

and k > 1, it follows that Γ1 < 0. If Γ2 = 0, then α2nq = (kF pk )25−q ∈ Q, a
contradiction.

For Γ3, assuming that it is zero, we get

kαp − (k + 1) = F qn∆p5
p/2α−p(k+1).

Taking norms in Q[
√

5], we get

|(−1)p − Lp + 1)k2 + (2− Lp)k + 1| = F 2q
n 5p|(−1)p − Lp + 1|.

For p even, we get

(8) |(Lp − 2)k2 + (Lp − 2)k − 1| = F 2q
n 5p|Lp − 2|.

The case Lp − 2 = 0 is impossible since it leads to 1 = 0. Thus, both sides above
are nonzero. If p is odd, we get

(9) |Lpk2 + (Lp − 2)k − 1| = F 2q
n 5pL2

p,

and again both sides are nonzero. We thus get from (8) and (9) according to
whether p is even or odd, respectively, that

X < 10nq =

(
30

logα

)
q(n/3) logα < 100q(n− 2) logα < logF 2q

n

< | log(Lpk
2)| ≤ logLp + 2 log k < p+ 2 log k

< X

(
10

k
+

2 log(10X)

X

)
,

so

1 <
10

k
+

2 log(10X)

X
.

Assuming that X > 1010, it follows that

(10) k ≤ 10.
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Finally, if Γ4 = 0, then

kαp − (k + 1) = 5(p−q)/2∆2
pα

qn−p(k+1),

which upon taking norms becomes

|(−1)p − Lp + 1)k2 + (2− Lp)k + 1| = 5p−q((−1)p − Lp + 1)2.

These equations have been solved in [4] and they have no solutions with k ≥ 3. So,
we record what we have proved.

Lemma 6.1. If k ≥ 3, the forms Γ1, Γ2, Γ4 are nonzero. Furthermore, if X > 1010

and Γ3 = 0, then k ≤ 10.

7. The terminology

Definition. We say that

F jm =

(
αm√

5

)j (
1 +

(−1)m

α2m

)j
is “expandable”, if the right parenthesis above satisfies

(11)

(
1 +

(−1)m

α2m

)j
= 1 + ζj,m, with |ζj,m| <

1

α1.5m
.

Lemma 7.1. If κ > 0 is any constant and j < mκ, then estimate (11) above holds
provided m > c2 := c2(κ), where c2(κ) is such that

2mκ < α0.5m holds for all m > c2(κ).

Proof. Suppose that m is even. Then(
1 +

(−1)m

α2m

)j
<

(
1 +

1

α2m

)j
< exp

(
j

α2m

)
< 1 +

2j

α2m
,

provided j/α2m < 1/2. Thus, we need 2j/α2m < 1/α1.5m, or 2j < α0.5m, so
2mκ < α0.5m, which clearly holds for m > c2(κ). A similar argument works for m
odd. �

8. The strategy

We will start with the linear form Γ1 which is small. We look for positive
constants κ1, κ2, κ3 all smaller than 1 such that

k > Xκ1 , p > Xκ2 , n > Xκ3 ,

for X > X0. For this subsection we shall ignore the implied constants (but we
will make them explicit when time comes) and we use the Vinogradov symbols �
and �. If we succeed say first that k > Xκ1 , it then follows, by Lemma 4.1, that
p� X/k � X1−κ1 � k(1−κ1)/κ1 so, by Lemma 7.1, F pk is expandable. This allows
us to transform first Γ1 into Γ3. If this further allows us to conclude that also
n > Xκ3 , then the same argument based on Lemma 4.1 and Lemma 7.1 shows that
q � X/n� X1−κ3 � n(1−κ3)/κ3 , which allows us to further transform Γ1 into Γ2

and Γ3 into Γ4. At each stage we need to worry about whether Γi 6= 0, but we
already showed that this is the case for i = 1, 2, 4 and if Γ3 = 0, then Xκ1 < k ≤ 10
already gives a bound on X. At each stage, we will have bounds of the form

(12) log |Γi| � −a,
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where a is one of the variables k, n, p, q. Comparing this with the corresponding
lower bound on log |Γi| from the ith row and right–most column of Table 7, we get
some upper bound on a in terms of some of the variables k, n, p, q. The goal is to
recursively get to Γ5 which will then imply that a � (log 10X)2. Assuming that
this last a satisfies a = min{p, k, n}, then a > Xκ4 with κ4 := min{κ1, κ2, κ3}, so
we get a bound on X. There is still the possibility that Γ5 is zero and taking care
of this eventuality requires quite a bit of work. To deal with this last situation, we
show that it leads to yet another (a sixth) linear form in logarithms of algebraic
numbers which is small and non-zero, so we can apply Theorem 2.1 to it and get a
bound on X. So, now the plan is clear, let’s see the details.

9. The value of κ1

Lemma 9.1. We can take κ1 = 1/4 for X > 10200.

Proof. We writeX0 for some number increasing from one iteration to the next which
is a lower bound on X resulting from some inequality. At the end we collect the
largest X0 that we have encountered along the way. We assume that k < X1/4 and
we search for an acceptable X0. From Lemma 4 in [4], we have that Fj/Fj+1 ≤ 2/3
for all j ≥ 2. In particular, Fk−j/Fk ≤ (2/3)j for all j = 1, 2, . . . , k − 2, while for
j = k − 1 this must be replaced by F1/Fk ≤ (2/3)k−2. Thus, in the left-hand side
of (3), we have

(13) M = kF pk

1 +

k−1∑
j=1

(
k − j
k

)(
Fk−j
Fk

)p = kF pk

(
1 +O

(
1

1.5p

))
.

The constant inside the O can be taken to be 6 since

k−1∑
j=1

(
k − j
k

)(
Fk−j
Fk

)p
< 2

∑
j≥1

(
2

3

)jp
≤ 2

1.5p

∑
j≥0

(
2

3

)j
=

6

1.5p
.

Thus,

F qn = kF pk

(
1 +O

(
1

1.5p

))
,

which leads to

|(kF pk )−1F qn − 1| < 6

1.5p
.

The linear form on the left–hand side is the same as Γ1, except that the exponents
are replaced by their negatives. This changes neither the conclusion that it is
non-zero nor its lower bound from Table 7, so we get

log |Γ1| < −p log 1.5 + log 6,

which is inequality (12) with i = 1 and a := p. Comparing it with the right–most
entry of the first row in Table 7, we get

p log 1.5− log 6 < 1017nk(log 10X)2.

Thus,

p <
1

log 1.5

(
1017nk(log 10X)2 + log 6

)
< 1018nk(log 10X)2.
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Since n < 10X/q < 100kp/q by Lemma 4.1, we get p < 1020(k2p)/q(log 10X)2,
which leads to

(14) q < 1020k2(log 10X)2.

Since we are assuming that k < X1/4, we get q < 1020X1/2(log 10X)2. Thus,

n > 10−1X/q > 10−21X1/2/(log 10X)2 > X1/3 provided X > X0 := 10160.

Thus, q < 10X/n < 10X2/3 ≤ 10n2 < n3. Since n > X1/3 > 10 we have that
q < n3. Lemma 7.1 shows that F qn is expandable for n > n0, where we can take n0
such that

2n3 < α0.5n holds for all n > n0.

We can take n0 := 100, and for us n > X1/3 > n0 holds for X > X0. Thus, for
X > X0, we have

M = F qn =
αnq

5q/2

(
1 +O

(
1

αn

))
,

and the constant inside the O can be taken to be 1. Hence,

(15) kF pk

(
1 +O

(
1

1.5p

))
= M =

αnq

5q/2

(
1 +O

(
1

αn

))
.

The constants in both O above can be taken to be 6. Note that p > 100. Indeed,
if not then

100 > p > 10−1X/k > 10−1X3/4,

which gives X < 104, a contradiction. Since p and n are both large, both terms
involving O are at most 1/2 in absolute values in (15) so the cofactors of kF pk and

αnq/5q/2 are all in [1/2, 3/2]. Thus, the ratio of these two numbers is in [1/3, 3].
After some rearranging and using the fact that α > 1.5, it leads to

|kF pkα
−nq5q/2 − 1| < 24

1.5min{p,n} .

We recognise that the above inequality is

log |Γ2| � −min{p, n},
which is estimate (12) with i = 2 and a := min{p, n}. Thus, by looking at the
right–most column in the second row of the Table 7, we get

−min{p, n} log(1.5) + log 24 < 1017k(log 10X)2,

so

(16) a <
1

log 1.5

(
1017k(log 10X)2 + log 24

)
< 1018k(log 10X)2.

Assume that a = n. Then

(17) n < 1018k(log 10X)2.

Multiplying (14) and (17), we get

10−1X < nq < 1038k3(log 10X)4 < 1038X3/4(log 10X)4.

Thus,

X1/4 < 1039(log 10X)4, so X < X0 := 10200.

Assume next that a = p. Then estimate (16) tells us that

p < 1018k(logX)2.



ON THE EQUATION
∑k

j=1 jF
p
j = F q

n 9

Since p > 10−1X/k by Lemma 4.1, we get

10−1X/k < p < 1018k(log 10X)2, therefore k > 10−10X1/2/(log 10X).

Since k < X1/4, we get X1/4 < 1010(log 10X), which leads to X < 1050, a contra-
diction. This finishes the proof of this lemma. �

10. The value of κ2

Lemma 10.1. We can take κ2 = 1/9 for X > 102000.

Proof. We follow the same convention about X0 as in Lemma 9.1. We assume that
p < X1/9. We use Lemma 9.1 and Lemma 7.1 to conclude that F pj is expandable

for all j ≥ ` := bk/2c+ 1(≥ 2). Indeed, for us,

p < 10X/k < 10k3 = 80(k/2)3 < (k/2)4,

since k/2 > (1/2)X1/4 > 80 for X > 10200. Thus, it suffices, by Lemma 7.1, that
κ/2 > c2(4), where c2(4) is such that

2n4 < α0.5n holds for all n > c2(4),

and we can take c2(4) := 100, which is acceptable since k/2 > 0.5X
1/4
0 > c2(4).

Thus,

F pj =
αpj

5p/2

(
1 +O

(
1

αk/2

))
for j ∈ [`, k].

The constant inside O can be taken to be 1. Hence,

M =
∑
j≤`−1

jF pj +

k∑
j=`

jF pj =: S1 + S2

(
1 +

ζ

αk/2

)
, |ζ| < 1.

Note that

S1 = `F p`−1

1 +

`−2∑
j=1

(
`− 1− j
`− 1

)(
F`−1−j
F`−1

)p
< 7kF p`−1 < 7kα(`−2)p ≤ 7kα(k−2)p/2 = 7

√
k(kF pk )1/2 < 7(kM)1/2 <

10M

αk/2
.

The above inequality follows since M > kFk > α−2(kαk) > (0.7)2(kαk). Further-
more,

S2 =

k∑
j=`

αjp

5p/2
=

1

5p/2

k∑
j=`

αjp

=
αp

5p/2

 k∑
j=1

j(αp)j−1 −
`−1∑
j=1

j(αp)j−1


=

αp

5p/2

(
kα(k+1)p − (k + 1)αkp + 1

(αp − 1)2
− (`− 1)α`p − `α(`−1)p + 1

(αp − 1)2

)
=

αp

5p/2

(
kα(k+1)p − (k + 1)αkp

(αp − 1)2

)(
1 +O

(
1

αkp
+

1

α(k−`)p

))
=

α(k+1)p(kαp − (k + 1))

5p/2(αp − 1)2

(
1 +O

(
1

αk/2

))
.(18)
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In the above, we used that

kα(k+1)p − (k + 1)αkp = kαkp(αp − (k + 1)/k) ≥ kαkp(α− 4/3) > (k/4)αkp

for all p ≥ 1 and k ≥ 3. Thus, since |(`−1)α`p−`α(`−1)p+1| ≤ `α`p, it follows that
the constant inside the first O in (18) can be taken to be 4. Thus, the constant in
the second O can be taken to be 10. Hence,

S2 =
α(k+1)p(kαp − (k + 1))

5p/2(αp − 1)2

(
1 +O

(
1

αk/2

))
.

It thus follows that

M = O

(
M

αk/2

)
+
α(k+1)p(kαp − (k + 1))

5p/2(αp − 1)2

(
1 +O

(
1

αk/2

))
,

where the constant in both O can be taken to be 10. Since k is large it is now clear
that the first term above can also be absorbed into the error term. Thus,

(19) M =
α(k+1)p(kαp − (k + 1))

5p/2(αp − 1)2

(
1 +O

(
1

αk/2

))
,

where the constant in the last O can be taken to be 30. Consequently, our equation
(3) is

α(k+1)p(kαp − (k + 1))

5p/2(αp − 1)2

(
1 +O

(
1

αk/2

))
= F qn .

Since the factor involving O is in (1/2, 3/2), by rearranging, it gives

(20)

∣∣∣∣α(k+1)p

(
(kαp − (k + 1))

5p/2(αp − 1)2

)
F−qn − 1

∣∣∣∣ = O

(
1

αk/2

)
,

where the constant in the last O can be taken to be 100. In the left–hand side of
(20), we recognise Γ3, which we may assume that it is nonzero by Lemma 6.1 for
X > X0 since k > X1/4 > 10. Thus,

log |Γ3| � −k,

so we have inequality (12) for i = 3 and a := k. Looking in the appropriate entry
in the Table 7, we get from estimate (20) and the fact that the constant in its O
can be taken to be 100 that

(21) (k/2) logα− log 100 < 1017pn(log 10X)2.

Thus,

k <
2

logα

(
1017pn(log 10X)2 + log 100

)
< 1018pn(log 10X)2.

Since p < X1/9 and k > X1/4, it follows that

n > 10−18(k/(p(log 10X)2) > 10−18X1/4−1/9/(log 10X)2 > X1/8, X > X0 := 102000.

We now use Lemma 7.1 to conclude that F qn is expandable. That is,

q < 10X/n < 10n7 < n8 since n > X
1/8
0 > 10,

so we want that n > c2(8), where c2(8) is such that

2n8 < α0.5n holds for n > c2(8).
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Since we can take c2(8) := 100 and n > 100, we conclude that indeed F qn is expand-
able. Thus,

M =
α(k+1)p(kαp − (k + 1))

5p/2(αp − 1)2

(
1 +O

(
1

αk/2

))
=
αnq

5q/2

(
1 +O

(
1

αn

))
.

The constant in both O can be taken to be 30. Rearranging the above equality we
get

(22)

∣∣∣∣αp(k+1)−qn
(

(kαp − (k + 1))

5p/2(αp − 1)2

)
5(q−p)/2 − 1

∣∣∣∣ = O

(
1

αmin{k/2,n}

)
,

where the constant in the last O can be taken to be 100. In the left–hand side, we
recognise Γ4, which we proved that it is nonzero. Thus, this gives

log |Γ4| � −min{k/2, n}.

This is inequality (12) with i = 4 and a := min{k/2, n}. Let us put some numbers
in it. Looking at the appropriate entry in Table 7, we get

(23) a logα− log 100 < 1017p(log 10X)2.

This implies

(24) a <
1

logα

(
1017p(log 10X)2 + log 100

)
< 1018p(log 10X)2.

If a = k/2, then

k < 2× 1018p(log 10X)2 < 1019p(log 10X)2.

Since k > 10−1X/p by Lemma 4.1, we get

X/p < 1020p(log 10X)2, therefore p > 10−10X1/2/(log 10X).

Since we assumed that p < X1/9, we get X1/9 > 10−10X1/2/(log 10X), which
implies X < 1050, which is false. If a = n, we get

(25) n < 1018p(log 10X)2.

Inserting (25) into (21) and using Lemma 9.1, we get

X1/4 < k < 1018pn(log 10X)2 < 1036p2(log 10X)4 < 1036X2/9(log 10X)4,

which gives X < 101900, a contradiction. This finishes the proof of this lemma. �

11. The value of κ3

Lemma 11.1. We have κ3 = 1/10 for X > 102499.

Proof. We return to estimates to estimates (13), use Lemma 7.1 and the fact that
F pk is expandable. Indeed, for this note that

p < 10X/k < 10k3 < k4,

and one checks that k > c2(4) in our range for k > X
1/4
0 . Thus, we get that

M = kF pk

(
1 +O

(
1

1.5p

))
=
kαpk

5p/2

(
1 +O

(
1

αk

))(
1 +O

(
1

1.5p

))
=

kαpk

5p/2

(
1 +O

(
1

1.5min{p,k}

))
.
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The constant inside the O can be taken to be 3. Thus, equation (3) is

(26)
kαpk

5p/2

(
1 +O

(
1

1.5min{p,k}

))
= F qn ,

and can be rewritten as

|kαpk5−p/2F−qn − 1| = O

(
1

1.5min{p,k}

)
,

where the constant inside the last O can be taken to be 10. In the left, we recognise
Γ2. Since Γ2 6= 0, we get

log |Γ2| � −min{p, k},
which is inequality (12) with a := min{p, k}. Looking in the appropriate entry in
Table 7, we get that

log 1.5 min{p, k} − log 10 < 1017n(log 10X)2,

which implies, by arguments used before, that

min{p, k} < 1018n(log 10X)2.

Since min{p, k} > X1/9, by Lemmas 9.1 and 10.1, we get

n > 10−18X1/9/(log 10X)2 > X1/10 for X > 102499.

�

12. The case when Γ5 6= 0

Lemma 12.1. We have X ≤ 102499 provided Γ5 6= 0.

Proof. Assume X > 102499. By Lemma 11.1, F qn is also expandable. Indeed we
can check easily that q < 10X/n < 10n9 < n10 and n > c2(10) in our range. So,
equation (26) is

kαkp

5p/2

(
1 +O

(
1

1.5min{p,k}

))
= F qn =

αqn

5q/2

(
1 +O

(
1

αn

))
.

The constants inside both O can be taken to be 10. This can be rearranged as

|kαpk−qn5(q−p)/2 − 1| = O

(
1

1.5min{k,n,p}

)
,

where the constant inside the last O can be taken to be 100. In the left–hand side,
we recognise Γ5 which we assume it is nonzero. Thus,

log |Γ5| � −min{k, n, p}.

This is estimate (12) with a := min{k, p, n}. Looking at the appropriate entry in
Table (7), we have

log 1.5 min{k, n, p} − log 100 < 1017(log 10X)2,

which implies

min{k, n, p} < 1018(log 10X)2.

Since the left–hand side above is > X1/10 by Lemmas 9.1, 10.1 and 11.1, we get
X1/10 < 1018(log 10X)2, which gives X < 10300 a contradiction with X > 102499.

�
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13. The case when Γ5 = 0

Lemma 13.1. If Γ5 = 0, then X ≤ 102499.

Before giving the proof, note that this finishes the proof of our theorem since by
Lemma 4.1, we have max{k, n, p, q} < 10X < 102500.

Proof. This is messy. We write X0 := 102499. The condition that Γ5 = 0 implies
the equality αkp−nq = (5(p−q)/2/k). Squaring this we get α2(kp−nq) = 5p−q/k2 ∈ Q.
The only possibility is that both sides of the above equality are 1. Thus, kp = nq
and k = 5(p−q)/2. In particular, p > q, p − q is even and p − q = O(log(10X)),
where the constant in the O can be taken to be 10. We look at secondary terms.
We have

M = kF pk

(
1 +

k − 1

k

(
Fk−1
Fk

)p
+O

((
Fk−2
Fk

)p))
=

kαkp

5p/2

(
1 +

(−1)k

α2k

)p(
1 +

k − 1

kαp

(
1 +O

(
1

α2k

))p
+O

(
1

α2p

))
=

kαkp

5p/2

(
1 +

p(−1)k

α2k
+O

(
1

α3k

))(
1 +

(k − 1)

kαp
+O

(
1

αp+1.5k
+

1

α2p

))
=

kαpk

5p/2

(
1 +

p(−1)k

α2k
+
k − 1

kαp
+O

(
1

α2p
+

1

αp+1.5k
+

1

α3k

))
.

By previous arguments (see Lemma 9.1), the constant in the first O above can be
taken to be 10. In the second row of the above estimates, the constants inside the
O can again be taken to be 10 (here we use that Fk > αk−2 = ααk−3 > αFk−2)
as well as on the third row above, so in the last O they can be chosen to be 25.
Working on the other side of the equation, we have

F qn =
αnq

5q/2

(
1 +

(−1)n

α2n

)
=

αnq

5q/2

(
1 +

(−1)nq

α2n
+O

(
1

α3n

))
,

where the constant inside this O can be chosen to be 10 as well. Since we have that
kαkp/5p/2 = αnq/5q/2, we may cancel these multiplicative factors and get

(27)
p(−1)k

α2k
+

(k − 1)

kαp
− q(−1)n

α2n
= O

(
1

α2p
+

1

αp+1.5k
+

1

α3n
+

1

α3k

)
.

We need to look at the spacing between p, 2k, 2n. The three terms above are all
of the form exp(O(log 10X))/αt, where t ∈ {p, 2k, 2n} and the constant inside this
O is 1. Let a := min{p, 2k, 2n} and let b ≥ a be the next number in {p, 2k, 2n}. If
b− a > C1 logX with a sufficiently large constant C1, we get a contradiction. Let
us compute C1. Say a = p. We then get

k − 1

kαp
≤ exp((log 10X)

(
1

α2n
+

1

α2k

)
+O

(
1

α2p
+

1

αp+1.5k
+

1

α3n
+

1

α3k

)
.
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Multiplying by αp, we get

2

3
≤ exp((log 10X))

(
1

α2n−p +
1

α2k−p

)
(28)

+ O

(
1

αp
+

1

αk
+

1

α(2n−p)+n

)
.

Let C1 be the constant implied by the above O. Assume that p is in such a way
that 2n− p > 3C1 logX and 2k − p > 3C1 logX. Then the first term above is

<
20X

αC1 logX
=

20

XC1(logα3−1) <
20

X
<

1

4
,

for X > X0 provided we choose C1 := 3, since 3(logα3 − 1) > 1. The last term
inside the O on the right–hand side of estimate (28) is even smaller (much smaller
than 1/4). The same argument works if a = 2k or a = 2n. This shows that the
smallest of p, 2k, 2n must be at distance at most 3 logX < 10 log(10X) of the next
largest one.

We distinguish 3 cases:

Case 1. p − 2k = O(log(10X)). Since p − q = O(log(10X)), we have that
q − 2k = (q − p) + (p− 2k) = O(logX). The constant in the last O is 20. Thus,

2n =
pk

q
= 2k

(2k +O(log(10X)))

2k +O(log(10X))

= 2k

(
1 +O

(
log(10X)

k

))(
1 +O

(
log(10X)

k

))−1
= 2k

(
1 +O

(
log(10X)

k

))
= 2k +O(log(10X)).

The constant in the last O above can be taken to be 100. In the above, we used
Lemma 9.1 to the effect that k > X1/4 to conclude that logX/k < logX/X1/4 is a
very small number for X > X0. Thus,

p = 2k + u, q = 2k + v, 2n = 2k + w, max{|u|, |v|, |w|} = O(log(10X)).

The constant inside this O is 100. Since 2pk = 2nq, we get

(2k + u)2k = (2k + v)(2k + w), so 2k(u− v − w) = vw.

If u− v − w 6= 0, then vw 6= 0. In this case, k | vw and k ≤ |vw|. Since k > X1/4,
it follows that X1/4 < k ≤ |uv| < 104(log(10X))2, which is impossible for X > X0.
Thus, for X > X0, we must have u = v + w so vw = 0, therefore v = 0 or w = 0.
This shows that either n = k or q = 2k. If n = k, we get p = q, but in this case the
left–hand side of (3) is

> kF pk = kF qn > F qn ,

a contradiction. Thus, q = 2k and from pk = qn, we get p = 2n. Further,
2n− 2k = p− q = O(log(10X)), where again the constant inside O can be taken to
be 100.
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Case 2. p − 2n = O(log(10X)). Since p − q = O(log(10X)), we get that
q − 2n = O(log(10X)). The constant inside the last O is 20. Thus,

2k =
(2n)q

p
= 2n

(2n+O(log(10X)))

2n+O(log(10X))

= 2n

(
1 +O

(
log(10X)

n

))(
1 +O

(
log(10X)

n

))−1
= 2n

(
1 +O

(
log(10X)

n

))
= 2n+O(log(10X)).

The constant inside the last O can be taken to be 100. So, 2n−2k = O(log(10X)),
which implies p − 2k = O(logX). The constant inside this last O can be taken
to be 200. So, this case leads to the same conclusion as the previous one up to a
slightly worse constant inside the O.

Case 3. 2n− 2k = O(log(10X)). In all Cases 1,2,3 we got that their hypothesis
implied that 2n− 2k = O(log(10X)) with the constant inside the O being at most
200. In the first cases, we also know that p − 2n = O(log(10X)) as well, but not
necessarily in the third case. Well, let us show that this must be so in Case 3 as
well. Assume |p − 2n| > 1000 logX. Recall that we cannot have that p is the
smallest of all three numbers in this case. So, in fact it must be the case that p is
the largest of 2k, 2n, p. In the left–hand side of equation (27), we move the term
corresponding to p to the right–hand side. Assuming say k < n, we get

(29)
p(−1)kα2n−2k − q(−1)n

α2n
=
−(k − 1)

kαp
+O

(
1

α2p
+

1

α3.5k
+

1

α3n
+

1

α3k

)
.

As we said, the constant inside the above O can be taken to be 25. The number
in the left–hand side is not zero since α2n−2k is not rational. The numerator is a
quadratic integer in Q[

√
5] so its norm is ≥ 1. Thus,

|(−1)kpα2n−2k − q(−1)n||(−1)kpβ2n−2k − q| ≥ 1.

This shows that

|(−1)kpα2n−2k − q(−1)n| > exp(− log(10X)).

In the above, we used that

|(−1)kpβ2n−2k − q| < p+ q < 10X(1/k + 1/n) < 10X.

With the previous argument, it follows that if the inequality p− 2n > 10 log(10X)
holds, then we would get

1

10X
<

1

(10X)10(logα3−1) +O

(
1

α(p−2n)+p +
1

α(2k−2n)+1.5k
+

1

αn
+

1

αk+(2k−2n)

)
,

and 10(logα3 − 1) > 4, so the first term of the above inequality is < 1/(20X). We
thus get that

1

20X
< 100

(
1

α(p−2n)+p +
1

α(2k−2n)+1.5k
+

1

αn
+

1

αk+(2k−2n)

)
,
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Since k > X1/4 and |2n−2k| < 10 log(10X), we get that the minimum of the above
exponents is at least as large as min{k/2, n} > X1/10, so we get

X1/10 logα < log(800X),

which is of course false for X > X0. The same argument works when k > n.
Thus, it must be the case that even when the first (smallest) two numbers among
{p, 2n, 2k} are 2k and 2n, we also have p − 2n = O(logX), where the constant
inside this last O can be taken to be 1000. Up to the constant inside the O, this is
in fact one of the Cases 1 or 2. Hence, all assumptions and conclusions from Cases
1, 2, 3 simultaneously hold with the constant inside all O being 1000, and in this
case we saw that we must have p = 2n, 2n − 2k = p − q > 0 for X > X0. In this
final situation, the left–hand side of equation (27) is

(k − 1)/k + αp−2n((−1)k(pα2n−2k − q(−1)n)

αp
.

and the above expression is nonzero since (k − 1)/k is not an algebraic integer.
Thus,

(k − 1)/k
∣∣1− (−1)k−1(k/(k − 1))−1αp−2n(p(−1)kα2n−2k − q(−1)n)

∣∣
< 100

(
1

αp+O(log(10X)
+

1

αk+O(log(10X)
+

1

αn+O(log(10X))

)
.

All the constants inside the three exponents above are at most 1000. We know
that min{p, k, n} > X1/10. We need a lower bound on the left–hand side above.
Here is our new linear forms in logarithms, namely Γ6. It is a linear form in t := 3
logarithms with

(γ1, γ2, γ3, b1, b2, b3) := ((−1)k−1k/(k−1), α, (−1)kpα2n−2k−q(−1)n,−1, p−2n, 1).

It is not zero since (k − 1)/k is not an algebraic integer. Furthermore, we have
that h(γ1) < log k < log(10X), h(γ2) < 0.5 Clearly, we can take B := 10X. As for
h(γ3), we have

h(γ3) ≤ log p+ log q + |p− 2n|h(α) + log 2 < 103 log(10X).

Thus,

log |Γ6| > −c3(log(10X))3,

where we can take c3 an upper bound for

1.4× 303+3 × 34.5 × 22 × (1 + log 2)× 22 × 2× 103.

So, we can take c3 := c1 = 1017, and we then get that

(min{p/2, k/2, n/2} − 1000 log(10X)) logα− log(300) < 1017(log 10X))3 + log 2.

The last log 2 comes as an upper bound of log(k/(k − 1)). Since we know that
min{p/2, k/2, n/2} > 0.5X1/10, we get

0.5X1/10 <
1

logα

(
1017(log 10X)3 + log(600)

)
+1000 log(10X) < 5×1017(log(10X))3,

so X1/10 < 1018(log(10X))3, which is impossible for X > X0. This finishes the
proof. �
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14. Comments on computations

We did not make any attempts to reduce the bounds. However, we believe new
ideas will be needed to lower the bounds to the range where one can just enumerate
the solutions. Indeed, in order to reduce the variables, in the most fortunate case
where Γ5 6= 0, one is lead to a final inequality of the type

(30) |x logα− y log 51/2 + log k| � exp{−δz},
where

(x, y, z) := (kp− qn, q − p,min{k, p, q}),
and δ > 0 in (30) is some small number. At this step, one applies a reduction
method due to Baker and Davenport which only requires bounds on the variables
x and y and returns a reasonably small value on z. However, in order for that to
work, k has be to be known. Our k is known in the sense that it is bounded but
the bound on it is astronomical. Thus, one cannot hope to completely solve the
given equation unless one can come up with some reasonable small bounds on k
(say 1010), which our current method cannot provide.
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[8] D. Marques and A. Togbé, “On the sum of powers of two consecutive Fibonacci numbers”,
Proc. Japan Acad. Sci. 86 (2010), 174–176.

[9] E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in log-

arithms of algebraic numbers. II”, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180;
English transl. in Izv. Math. 64 (2000), 1217–1269.

[10] G. Soydan, L. Németh and L. Szalay, “On the Diophantine equation
∑k

j=1 jF
p
j = F q

n”,

Archivum Math. 54 (2018), 177-188.

Research Group in Algebraic Structures and its Applications, King Abdulaziz Uni-
versity, Jeddah, Saudi Arabia

E-mail address: aaltassan@kau.edu.sa

School of Maths, Wits University, South Africa, Research Group in Algebraic

Structures and Applications, King Abdulaziz University, Jeddah, Saudi Arabia, Max
Planck Institute for Mathematics, Bonn, Germany and Centro de Ciencias Matemáticas,
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